Use of a porcine urinary bladder acellular matrix for corneal reconstruction in dogs and cats

Olivier Balland,* Anne-Sophie Poinsard,† Frank Famose,‡ Frédéric Goulle,§ Pierre-François Isard,¶ and Thomas Dulaurent§

*Centre Hospitalier Vétérinaire, 95 rue des Mazurots, Ludres 54710, France; †Clinique vétérinaire des Acacias, 42 Avenue Lucien-Servanty, Blagnac 31700, France; ‡Clinique Vétérinaire, Parc d’activité Mermoz, 19 Avenue de la forêt, Eysines 33320, France; §Centre Hospitalier Vétérinaire, 275 route Impériale, Saint-Martin Bellevue 74370, France; and ¶Eyevet Referrals, 41-43 Halton Station Road, Sutton Weaver, Cheshire WA7 3DN, United Kingdom

Abstract

Objective To describe the use of a porcine urinary bladder acellular matrix for surgical reconstruction of the cornea in cases of canine and feline deep corneal ulcers, and feline corneal sequestra.

Materials and methods Twenty-seven dogs and three cats with deep corneal ulcers and seven cats with corneal sequestra were included in the study with overall 38 eyes. For each patient, the necrotic material (ie corneal sequestrum or collagenolytic tissue) was removed by circular lamellar keratectomy. The collagen graft was then cut and prepared to match the stromal defect and then sutured into the lamellar keratectomy bed using interrupted and continuous patterns of absorbable polyglactin 9–0 sutures. Postoperative medical treatment consisted of topical and systemic administration of antibiotics, combined with topical administration of atropine sulfate. The animals were examined 18, 45, and 90 days after the surgery.

Results Postoperative examination revealed complete integration of the biomaterial in 93.5% of ulceration cases in both species and in 100% of feline corneal sequestrum cases. In two cases of ulceration (1 dog and 1 cat), progression of the collagenolytic process at the graft periphery required an additional conjunctival graft 7 days after the first surgery. At 90 days post-op, 100% of the eyes were sighted.

Conclusion Use of a porcine urinary bladder acellular matrix appears to be effective in the surgical management of deep corneal ulcers and feline corneal sequestra.

Key Words: acell, acellular matrix, cat, dog, sequestrum, ulcer

INTRODUCTION

Feline corneal sequestrum (FCS) is a common disease in the cat, with a breed predisposition reported in Persians and Himalayans.1,2 FCS is often associated with chronic mechanical irritation of the cornea by entropion, distichiasis, or diminished lacrimation.1–3 Feline herpesvirus 1 (FHV-1) involvement has also been reported in the pathogenesis of FCS.1 FCS appears as a relatively defined area, ranging from 1 mm in diameter to more than half the corneal surface,1 with a dark color ranging from brown to black. This part of the cornea is subject to necrosis.1,2 FCS can be asymptomatic or can cause moderate to intense pain.2 It is sometimes associated with corneal neovascularization.2 The surgical treatment of FCS often requires a deep lamellar keratectomy covering a large area. Corneal reconstruction by grafting is therefore essential for deep or large sequestra.2,5–6

A deep corneal ulcer can be defined as loss of stromal substance that may extend from half of the stromal thickness until perforation of the cornea can occur.7 During the scarring phase of the collagen matrix, disequilibrium between the proteases and their inhibitors can result in pathological degradation of the corneal stroma.8 This rapid stromal degradation associated with corneal ulcers, caused by proteolytic enzymes acting on the collagen (proteoglycans) and other components of the stroma, is called keratomalacia.7 These proteolytic enzymes are produced by the epithelial cells of the cornea and by fibroblasts.9 Microorganisms such as Pseudomonas aeruginosa also
secrete proteases. These extracellular enzymes of bacterial origin also activate endogenous proteolytic enzymes. Additional bacterial infections can lead to the degradation of an existing ulcer or the generation of a deep ulcer, making reconstructive surgery necessary. The aim of surgical treatment of these corneal diseases is to preserve structural integrity and maintain vision by conserving corneal transparency.

A large number of grafting techniques have been described for repairing corneal stromal loss due to FCS or deep ulceration: lamellar keratectomy associated with various conjunctival grafting techniques, corneo-conjunctival transposition, homologous and heterologous lamellar and penetrating transplants using fresh or frozen corneal tissue, and the use of autologous and heterologous biomaterials. Many biomaterials have been used to compensate loss of corneal substance, such as amniotic membrane, equine renal capsule, equine or bovine pericardium, and porcine small intestinal submucosa (SIS). The combined use of biomaterials and conjunctival flaps has also been described.

The aim of our study was to enhance the existing literature by determining the efficacy of using a porcine urinary bladder-derived collagen xenograft for the surgical reconstruction of feline corneal sequestra and deep corneal ulcers in dogs and cats.

MATERIALS AND METHODS

Animals included in the study

This study included 27 dogs presenting with deep corneal ulcers (Fig. 1). One of these dogs presented with bilateral corneal ulcers. The breeds represented were as follows: French bulldog (nine), Shih Tzu (five), Pekingese (three), Cavalier King Charles spaniel (two), pug (two), boxer (one), Labrador retriever (one), Chihuahua (one), Jagdterrier (one), American Staffordshire terrier (one), and mixed breed (one). The average age was 6.6 years, ranging from 5 months to 14 years. Gender distribution was 12 males (one neutered) and 15 females (eight neutered). The study also included 10 cats (eight Persians and two domestic shorthair). The average age was 5.6, ranging from 2 to 11 years. Gender distribution was six males and four females, all neutered. Seven cats presented with corneal sequestrum (Fig. 2), while three others presented with a deep corneal ulcer.

Ophthalmic examination

A complete ophthalmic examination consisting of a menace response, dazzle reflex, direct and indirect pupillary light reflexes, Schirmer Tear Test (STT, MSD Santé Animal, Clermont-Ferrand, France), fluorescein staining (fluorescein 0.5% single-dose eyewash, TVM, Lempdes, France), biomicroscopy (BX900, Haag-Streit, Chambery, France or Kowa SL 15, Kowa, Düsseldorf, Germany), and indirect ophthalmoscopy (HeineTM Omega 500; Herrsching, Germany; VolkTM 2.2; Panretinal lens, Mentor, USA) was performed in each animal. Indirect ophthalmoscopy was not performed in cases where the cornea was too opaque. Rebound tonometry (Tonovet, Icare, Vantaa, Finland) was performed in each eye except for eyes presenting with anterior chamber collapse or signs of corneal perforation.

Examination with a narrow slit beam of 0.1 mm was performed to evaluate the depth of lesions for 25 eyes. For the 13 others (seven ulcers and six FCS), the depth of corneal degradation was evaluated during surgery following a lamellar keratectomy and trimming of the corneal lesion. All the eyes treated for deep corneal ulcers presented with a loss of substance affecting more than half the stromal thickness.

Graft material

The biomaterial used is marketed by ACell VetTM in the form of lyophilized 15-mm diameter disks (ACell Vet Corneal Discs™; Lafayette, USA).

Figure 1. Preoperative photograph of the right eye of Dog 2 showing a deep melting corneal ulcer.

Figure 2. Preoperative photograph of the right eye of Cat 1 showing a feline corneal sequestrum and an entropion of the lower eyelid.
Surgery
Antibiotic prophylaxis was achieved by the intravenous (IV) administration of amoxicillin and clavulanic acid (Augmentin™ 1 g/200 mg; injectable solution, Laboratoire GlaxoSmithKline, Mary le Roi, France) at 20 mg/kg 1 h before surgery. Morphine hydrochloride (Morphine 10 mg, Lavoisier, Paris, France) at 0.05 mg/kg IV and carprofen (Rimadyl™ 50 mg/ml injectable, Zoetis, Paris, France) at a dose of 4 mg/kg were administered subcutaneously (SC) 30 min before induction, to provide analgesia and control inflammation. Premedication was performed 30 min prior to induction by IV administration of medetomidine (Domitor™; Sogeval, Laval, France) at 40 µg/kg. Anesthesia was induced via IV propofol administration (Propovet™; Axience, Pantin, France) at 1 mg/kg and maintained with inhaled 2.5% isoflurane (Isoflo™; Axience, Pantin, France) and oxygen, following endotracheal intubation. The eyelids and conjunctival sacs were then prepared by five successive washes with an iodized polyvidone solution (Vétédine™, Vetoquinol SA, Lures, France) diluted to 1% for the eyelids and to 0.2% for the cornea.

The diameter of the lesions was measured with a Castroviejo caliper; then, the cornea was trephined to the desired depth using a corneal trephine (trephine, and trephine handle open, Beaver-Visitec, Eybens, France) whose diameter corresponded to that of the lesion. In cases of collagenolytic corneal ulcers, all necrotic and collagenolytic tissues were removed with a crescent scalpel (2.5 mm Crescent 55°, Beaver-Visitec, Eybens France). In cases of FCS, the entire pigmented cornea was resected using a crescent scalpel. When the lesions exceeded two-thirds of the corneal stroma 2 layers of ACell Vet were used. In these cases, trephining was performed in two steps: The first trephine was used for the most superficial part to mid-stromal depth; then, a second smaller trephine permitted the excision of the deeper part whose diameter was smaller than that of the more superficial lesion (Fig. 3). In 25/27 dogs and in 7/10 cats, the removed portion of the cornea was processed for bacterial culture.

Following the lamellar keratectomy, the sterile dehydrated collagen disk was trephined with a trephine larger than that used for the lamellar keratectomy. For lesions of 4 to 7.5 mm in diameter, 0.5 mm was added to the diameter of the trephine used for the lamellar keratectomy. For lesions of 8 mm to 10 mm in diameter, 1 mm was added to the diameter of the lesion. The thickness of the dehydrated disk was measured with a micrometer (Exterior Micrometer, Mitutoyo, Roissy en France, France) in 4 cases. The graft was then hydrated using 0.5 ml of saline solution (BSS, Alcon, Rueil-Malmaison, France). The thickness of the rehydrated disk was again measured in the same 4 cases.

The disk was then introduced in the lamellar keratectomy bed. To avoid inverting the two faces, the upper face was marked with a sterile corneal marker (Dermotrace™, Novatech, La Ciotat, France). The graft was then sutured to the cornea with an absorbable suture material (Vicryl™ Suture absorbable 9-0, polyglactin 910, needle 5.5 mm ½ circle, Ethicon, Issy-les-Moulineaux, France). Four cardinal sutures were placed in the following order: 12, 6, 3, and 9 h in relation to the surgeon. The graft abutted the cornea without overlapping the adjacent healthy epithelium. Then, the spaces located between the four cardinal points were filled by a symmetrical saw tooth suture pattern (Fig. 4). In cases of two-layer lamellar keratectomies, two grafts of different diameters were used, the larger graft being the more superficial. In cases of corneal perforation, a Seidel test was performed at surgery completion (single-dose fluorescein eyewash at 0.5%, TVM, Lempdes, France).

In all patients in the study, a temporary nictitating membrane flap was placed for 18 days by three points in a U-shape using a single nylon suture (Prolène™ 6/0, Ethicon, Issy-les-Moulineaux, France). In the patient...
presenting with bilateral corneal ulcers, the nictitating membrane fixation was performed in only the more severely affected eye.

Medical treatment
Systemic carprofen (Dolagis™, Sogeval, Laval, France) at 4 mg/kg/day and amoxicillin–clavulanic acid (Kesium™, Sogeval, Laval, France) at 20 mg/kg twice a day was prescribed orally for 10 days. Topical tobramycin (Tobrex 0.3% eyelash, Alcon, Rueil-Malmaison, France) was applied q 4 h directly on the nictitating membrane for 18 days. Topical atropine sulfate 1% (Atropine Alcon™ 1%, Alcon, Rueil-Malmaison, France) was prescribed twice a day for 3 days.

Follow-up
Follow-up examinations were performed at 7 and 18 days after surgery to ensure the nictitating membrane flap remained in place and to evaluate for pain. For the dogs and cats which initially presented with perforations or infected ulcers, the nictitating membrane flap was removed 7 days after surgery, following IV injection of medetomidine (Domitor™, Sogeval, Laval, France) at 40 µg/kg and propofol (Propovet™, Axience, Pantin, France) at 1 mg/kg to check corneal healing and integrity by performing a Seidel test. The nictitating membrane flap was replaced for an additional 11 days in all these patients.

At 18 days postsurgery, the nictitating membrane flap was removed and the corneal graft was evaluated in all animals. All eyes were then treated with topical indometacin (Indocollyre 0.1%™, Chauvin, Montpellier, France) TID.

A complete ophthalmic examination was performed at 45 and 90 days postsurgery. Vision was evaluated by means of menace response, dazzle reflex, and lateralized cotton ball test. Corneal opacity was subjectively classified in three grades: mild opacity, moderate opacity, and severe opacity.

RESULTS
Preoperative examination
Lacrimal gland dysfunction was diagnosed in 5 dogs who presented with a Schirmer tear test (STT) of less than 10 mm, and in 3 dogs and 1 cat with a STT of less than 7 mm. Topical 0.2% cyclosporine (Optimmune, Intervet, Beaucouze, France) and sodium hyaluronate (Viskyal, TVM, Lempdes, France) were administered in these dogs after complete resolution of the corneal ulcer. The cat was treated with topical sodium hyaluronate.

Nasal entropion of the lower eyelid was present in four cats which was corrected at the same time as the corneal surgery. Distichiasis was present in four dogs, one dog had conjunctival ectopic cilia, and two dogs had entropion. Distichiasis and ectopic cilia were treated by cryotherapy, and entropion was corrected using standard Hotz-Celsus technique as previously described. All procedures were performed at the same time as the corneal surgery.

Moderate pigmentation of the cornea was present in eight dogs, affecting the inferonasal quadrant with surface pigmentation of less than 25% of the total surface of the cornea. One dog, a French bulldog, presented bilaterally, with a predescemetic ulcer in one eye and a corneal ulcer affecting more than half of the stromal thickness in the other eye.

Seven cats presented with a FCS. One cat presented with a loss of corneal stroma secondary to a chemical burn, one cat presented with a claw scratch, and one cat presented with a deep corneal ulcer of unknown origin.

An overview of the patients included in the present study is presented in Table 1.

Perioperative observations
The mean thickness of the dehydrated disk was 147.50 µm ± 12.5 µm. After rehydration in saline solution, the mean thickness of the graft was 265 µm ± 22.5 µm. Two layers of ACell Vet were used in 23 cases and only one layer in 15 cases.

Postoperative examination
Nine dogs presented with an infected ulcer diagnosed by bacterial culture. Bacterial infection with Streptococcus spp was detected in 4 dogs, with Escherichia coli in three dogs, and with Pseudomonas aeruginosa in two dogs. Bacterial culture was negative in 16 dogs. Bacterial culture revealed bacterial infection with Escherichia coli in 1 cat and was negative in 6 cats.

The nictitating membrane flap was removed at 7 days postsurgery in all the patients for whom the bacterial culture was positive and in one additional patient which was subjectively considered at higher risk of complications (Fig. 5). For these 11 cases at 7 days postsurgery, fluorescein staining was positive in 11 and a Seidel test was negative in nine animals. The two animals with aqueous humor leakage needed a complementary surgery consisting of a conjunctival flap to cover the entire biomaterial graft. These animals were one dog and one cat which showed partial suture dehiscence. In the remaining nine animals, no complementary surgery was necessary and the nictitating membrane flap was replaced for 11 additional days.

At day 18 postsurgery, the nictitating membrane flap was removed in all animals. At this point, five animals’ corneas stained fluorescein positive: two cats with a FCS of 9 mm (Fig. 6), one dog with an infected ulcer of 11 mm in diameter, one dogs with a deep corneal ulcer associated with a keratoconjunctivitis sicca, and one dog that presented with a stromal keratitis associated with a deep plant foreign body. The corneal integration of the biomaterial was complete at day 18 with re-epithelialization present in the remaining 92% of the cases.

<table>
<thead>
<tr>
<th>Species</th>
<th>Breed</th>
<th>Age (years)</th>
<th>Corneal Disease</th>
<th>Concurrent anomaly</th>
<th>Number of collagen layers</th>
<th>Bacteriology</th>
<th>Fluorescein staining day 7</th>
<th>Fluorescein staining day 18</th>
<th>Fluorescein staining day 45</th>
<th>Complication</th>
<th>Outcome</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cat 1</td>
<td>Persian</td>
<td>NM</td>
<td>5</td>
<td>FCS</td>
<td>Entropion</td>
<td>1</td>
<td>NP</td>
<td>NP</td>
<td>NEG</td>
<td></td>
<td>Severe</td>
</tr>
<tr>
<td>Cat 2</td>
<td>Persian</td>
<td>NM</td>
<td>7</td>
<td>FCS</td>
<td>Entropion, KCS</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Cat 3</td>
<td>Domestic Shorthair</td>
<td>NM</td>
<td>2</td>
<td>FCS</td>
<td>Entropion</td>
<td>2</td>
<td>NEG</td>
<td>POS</td>
<td>NEG</td>
<td></td>
<td>Severe</td>
</tr>
<tr>
<td>Cat 4</td>
<td>Persian</td>
<td>NF</td>
<td>11</td>
<td>FCS</td>
<td></td>
<td>2</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Cat 5</td>
<td>Persian</td>
<td>NF</td>
<td>7</td>
<td>FCS</td>
<td></td>
<td>2</td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td>Cat 6</td>
<td>Persian</td>
<td>NM</td>
<td>4</td>
<td>FCS</td>
<td></td>
<td>2</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td>Mild</td>
</tr>
<tr>
<td>Cat 7</td>
<td>Persian</td>
<td>NM</td>
<td>3</td>
<td>FCS</td>
<td>Entropion</td>
<td>1</td>
<td>NP</td>
<td></td>
<td></td>
<td></td>
<td>Severe</td>
</tr>
<tr>
<td>Cat 8</td>
<td>Persian</td>
<td>NF</td>
<td>8</td>
<td>Deep Corneal Wound (chemical burn)</td>
<td></td>
<td>2</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Cat 9</td>
<td>Persian</td>
<td>NF</td>
<td>6</td>
<td>Deep Corneal Ulcer</td>
<td></td>
<td>2</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td>Severe</td>
</tr>
<tr>
<td>Cat 10</td>
<td>Domestic Shorthair</td>
<td>NM</td>
<td>3</td>
<td>Deep Corneal Wound (claw scratch)</td>
<td></td>
<td>2</td>
<td>Escherichia coli</td>
<td>POS</td>
<td></td>
<td>Suture dehiscence and positive seidel test requiring a complementary conjunctival graft the seventh day after surgery</td>
<td>Severe</td>
</tr>
<tr>
<td>Dog 1</td>
<td>French bulldog</td>
<td>M</td>
<td>5</td>
<td>Penetrating corneal wound</td>
<td></td>
<td>2</td>
<td>Escherichia coli</td>
<td>POS</td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Dog 2</td>
<td>Shih-Tzu</td>
<td>NM</td>
<td>8</td>
<td>Deep melting corneal ulcer</td>
<td></td>
<td>2</td>
<td>Pseudomonas</td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Dog 3</td>
<td>Pug</td>
<td>M</td>
<td>5</td>
<td>Deep Corneal Ulcer</td>
<td></td>
<td>1</td>
<td>Streptococcus</td>
<td></td>
<td></td>
<td></td>
<td>Severe</td>
</tr>
<tr>
<td>Dog 4</td>
<td>French bulldog</td>
<td>M</td>
<td>6</td>
<td>Deep melting corneal ulcer</td>
<td></td>
<td>1</td>
<td>Streptococcus</td>
<td>POS</td>
<td>NEG</td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Dog 5</td>
<td>Cavalier King Charles spaniel</td>
<td>F</td>
<td>5.5</td>
<td>Deep melting corneal ulcer</td>
<td></td>
<td>2</td>
<td>Escherichia coli</td>
<td>NEG</td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Dog 6</td>
<td>Jagdterrier</td>
<td>NF</td>
<td>8</td>
<td>Penetrating corneal wound</td>
<td></td>
<td>2</td>
<td>Streptococcus</td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Dog 7</td>
<td>French bulldog</td>
<td>NF</td>
<td>3</td>
<td>Deep melting corneal ulcer</td>
<td></td>
<td>2</td>
<td>Escherichia coli</td>
<td></td>
<td></td>
<td></td>
<td>Moderate</td>
</tr>
<tr>
<td>Species</td>
<td>Breed</td>
<td>Age (years)</td>
<td>Sex</td>
<td>Concurrent disease</td>
<td>Corneal Disease</td>
<td>Number of collagen layers</td>
<td>Fluorescein staining day 7</td>
<td>Fluorescein staining day 18</td>
<td>Complication</td>
<td>Outcome</td>
<td></td>
</tr>
<tr>
<td>---------</td>
<td>-------</td>
<td>-------------</td>
<td>-----</td>
<td>--------------------</td>
<td>-----------------</td>
<td>--------------------------</td>
<td>---------------------------</td>
<td>---------------------------</td>
<td>--------------</td>
<td>---------</td>
<td></td>
</tr>
<tr>
<td>Dog 8</td>
<td>Shih tzu</td>
<td>M</td>
<td>9</td>
<td></td>
<td>Deep plant foreign body</td>
<td>2</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 9</td>
<td>Pekingese</td>
<td>F</td>
<td>2</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 10</td>
<td>Chihuahua</td>
<td>NF</td>
<td>3.5</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>2</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 11</td>
<td>French Bulldog</td>
<td>F</td>
<td>6</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 12</td>
<td>Cavalier King Charles spaniel</td>
<td>NF</td>
<td>9</td>
<td>Distichiasis, CP</td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 13</td>
<td>Shih tzu</td>
<td>NF</td>
<td>5</td>
<td>Distichiasis, CP</td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 14</td>
<td>Pug</td>
<td>F</td>
<td>0.4</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 15</td>
<td>French Bulldog</td>
<td>M</td>
<td>7</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 16</td>
<td>Shih tzu</td>
<td>NF</td>
<td>8</td>
<td>Distichiasis, CP</td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 17</td>
<td>Labrador retriever</td>
<td>M</td>
<td>10</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 18</td>
<td>French bulldog</td>
<td>F</td>
<td>6</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 19</td>
<td>Boxer</td>
<td>F</td>
<td>2.5</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 20</td>
<td>Pekingese</td>
<td>F</td>
<td>6</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 21</td>
<td>French bulldog</td>
<td>M</td>
<td>8</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 22</td>
<td>Crossbreed</td>
<td>F</td>
<td>10</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 23</td>
<td>Shih tzu</td>
<td>NF</td>
<td>7</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 24</td>
<td>American Staffordshire terrier</td>
<td>F</td>
<td>14</td>
<td></td>
<td>Deep plant foreign</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 25</td>
<td>Pekingese</td>
<td>F</td>
<td>10</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog 26</td>
<td>French bulldog</td>
<td>NF</td>
<td>7</td>
<td></td>
<td>Deep melat corneal ulcer</td>
<td>1</td>
<td>NEG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

© 2015 American College of Veterinary Ophthalmologists, *Veterinary Ophthalmology*, 1–10
The presence of an inflammatory reaction with small superficial inflammatory granulomas was observed around the sutures in all animals.

At 45 days postsurgery, complete integration of the bio-material graft with re-epithelialization was present in all eyes, as well as moderate corneal neovascularization. The two cases requiring a conjunctival flap healed favorably. In both cases, there was severe corneal scarring adversely affecting corneal transparency.

At 90 days postsurgery, the degree of corneal opacity was scored as severe (Fig. 7) in 8 eyes (21%), moderate (Fig. 8) in 24 eyes (63.2%), and mild (Fig. 9) in six eyes (15.8%). Vision was present in all 38 eyes at the completion of the study. Corneal pigmentation noted prior to surgery in eight animals did not progress over the course of the study.

At 90 days post-op, no recurrence of corneal sequestra was observed in the feline patients. Six animals had a
follow-up time over 1 year, and no progression of the scar appearance was observed. In the present study, the overall success rate was 96% in canine and 86% in feline patients with deep corneal ulcers and 100% in feline patients with corneal sequestra. A review of reported success rates with the use of different biomaterials in cases of deep corneal ulcers and FCS is reported in Table 2.

DISCUSSION

The use of biomaterials as grafts depends on essential criteria, such as the immune response and minimum inflammation of the recipient,

A biomaterial derived from porcine urinary bladder called urinary bladder matrix (UBM) is currently marketed by ACell Vet™, in the form of lyophilized disks 15 mm in diameter (Corneal Disc, ACell Vet, Lafayette, USA). UBM is a structure with two faces. The upper face corresponds to the basal membrane and has a dense acellular matrix that serves as a barrier between the epithelium and the other tissues. The face of the lamina propria is a more open acellular collagen matrix, propitious for the integration of conjunctive tissues in the bed of the wound. The UBM disk has a fail-safe indication on the right side to avoid inversion between the two faces of the graft as it is difficult to distinguish between the two faces with the naked eye. This biomaterial satisfies the requirements of regenerative medicine: It is acellular to reduce immune response, and it resorbs progressively to confer mechanical resistance to the regenerated tissue. The UBM is mainly employed in human medicine to reconstruct skin tissue, esophagus, tympanic membrane, and myocardium. In veterinary medicine, the use of this xenograft has been described in the surgical reconstruction of the cornea after removal of sequestra in cats and in the surgical management of an epibulbar melanoma in a cat. More recently, its use has been depicted in association with a conjunctival flap in the surgical management of corneal defects in dogs. The grossly similar composition between UBM and other types of acellular matrixes whose use has been validated in veterinary ophthalmology (i.e., SIS and pericardial patch) led us to assess its efficacy in the treatment of deep ulcers in both dogs and cats, and to confirm its usefulness in the corneal reconstruction following deep lamellar keratectomy in cases of feline corneal sequestra.

The surgical technique of UBM grafting closely resembled what has already been described for other grafting procedures. It required the complete ablation of the necrotic, infected, or pigmented corneal tissues before performing the graft. The ablation of these lesions was performed systematically with a trephine to facilitate preparation and positioning of the graft, and to speed and ease the surgery. The size of the graft was larger than the diameter of the corneal defect, which ensured a stable position within the defect and minimized the risk of rupture of the biomaterial when tightening the suture. It was rehydrated and then sutured to the healthy cornea as described for SIS and pericardium patches. In our study, UBM disk thickness was measured prior to and following rehydration in only a small number of cases. This precludes us from drawing definitive conclusion about the disparity in thickness or rehydration characteristics of UBM disks between different lot numbers. However, the relative heterogeneity of the thickness measurements may be the main limitation of the use of this material. Further

<table>
<thead>
<tr>
<th></th>
<th>Deep corneal ulcers in dogs</th>
<th>Deep corneal ulcers in cats</th>
<th>Feline corneal sequestrum</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Number of cases</td>
<td>Success rate</td>
<td>Reference</td>
</tr>
<tr>
<td>Small intestinal submucosa graft</td>
<td>5</td>
<td>100%</td>
<td>Vanore (35)</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>60%</td>
<td>Featherstone (33)</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>100%</td>
<td>Featherstone (32)</td>
</tr>
<tr>
<td></td>
<td>42</td>
<td>88%</td>
<td>Goulle (36)</td>
</tr>
<tr>
<td>Pericardium graft</td>
<td>3</td>
<td>66%</td>
<td>Dulaurent (30)</td>
</tr>
<tr>
<td></td>
<td>1</td>
<td>100%</td>
<td>Barros (28)</td>
</tr>
<tr>
<td>Urinary bladder graft</td>
<td>4</td>
<td>100%</td>
<td>Zigler (53)</td>
</tr>
</tbody>
</table>
investigations are required to confirm this observation. We believe this heterogeneity might be related to the manufacturing process. It would also be interesting to make the same measurements on SIS and bovine pericardial patch (BPP) disks to assess the homogeneity of the materials provided by each manufacturer.

During the follow-up at 7 days, temporary removal of the nictitating membrane flap for 9 eyes was performed to examine graft integration, corneal integrity, and status of corneal infection. The anchoring of the nictitating membrane was left in place for 15 days in the study by Vanore and 21 days in that by Goulle; we chose to compromise with 18 days in the present study. The need to perform general anesthesia to remove the sutures anchoring the nictitating membrane, then replace them, was constraining. However, we considered it was necessary to use this technique to protect the operation site mechanically. Furthermore, anchoring the nictitating membrane prevents the dehydration of the graft during the time required for scarring.

The results of our clinical study were similar to that obtained by Zigler on cats affected by FCS, with an accurate integration of the biomaterial in 100% of the cases, thus confirming that the use of UBM can be considered when managing FCS. The success rate of our procedure was also similar to that obtained with other collagen matrix grafts (i.e., SIS, pericardial patch, anniotic membrane), or lamellar corneal grafts, in the treatment of FCS. A successful outcome was also obtained in the management of deep corneal ulcers in both dogs (96%) and cats (86%) with the use of UBM grafts. These results are comparable to those observed with other types of graft (i.e., SIS, pericardial patch, anniotic membrane). The two failures of our series (1 of 28 canine eyes and one of seven feline eyes) were secondary to suture dehiscence despite the mechanical protection provided by the anchoring of the nictitating membrane.

The clinical evaluation of the healing process after UBM grafting revealed a similar chronology as compared with previous studies utilizing SIS and BPP grafting under similar conditions. The first phase of healing was led by a centripetal corneal neovascularization which was more obvious in dogs than in cats. The second phase was almost contemporary to the progressive corneal neovascularization and was led by progressive epithelialization of the cornea. This phase was obviously longer in patients with larger corneal lesions. The last phase appeared as a vascular regression and stromal remodeling toward transparency.

CONCLUSION

The results of our study are comparable to those of other studies describing the use of various biomaterials in the surgical management of corneal defects resulting from different pathological insults. The presentation of commercially available collagenic xenografts (UBM, SIS, BPP) is similar, as is the biological behavior of those different biomaterials. Therefore, it appears that UBM, as SIS and BPP, should be considered by veterinary ophthalmologists when surgically reconstructing the cornea following many pathological conditions.

REFERENCES

